

Gestion Thermique des convertisseurs intégrés

S. Harmand, S. Ounezerfi, R. Boubaker

Contact : souad.harmand@univ-valenciennes.fr

Les objectifs de la programmation

Modélisation aéraulique et thermique

Identification des échauffements en régime permanant, stationnaire et dégradé

Proposition de nouvelles solutions de gestion thermique

Modélisation aérothermique : Plateforme SAME

3

onvertisseur d'énergie

Intégré ntelligent

Méthodes **S**imulation d'optimisation **A**érothermique Températures Géométrie, matériaux, ... des **M**achines 500 **E**lectriques SAME Pertes 400 Méthode nodale 300 200 **Modélisation CFD** 100 Cartographie débits °C Modèles de refroidissement us entrante convection, jets, caloduc, boucles diphasiques..., Evaporation Structure poreuse Europe Région Hauts-de-France Liberté • Égalité • Fraternité de-Franc (En cours...) République Française

Cas de référence : Machine Myghale

Structure De l'écoulement

Maillage

millions de

CFD:4

mailles

l'Europe

de-Franc

Cartographie des fluids : 20N,m ; 750 tr/min

1

Debit (L/S)

10.22

-7.75

0.745

Pertes totales au rotor = 3,8 W Pertes totales au stator = 29,2 W Pertes totales dans les bobines = 337 W

5

d'énergie

Intégré ntelligent

Modélisation sous SAME

Nombre de noeuds : 3076

; Т

Temps de calcul : 3 minutes

Décomposition axiale de la machine

Arbre

Isolant

Aimant Cuivre Tole

Carter Air

Cartographie des températures

Coupe tetes des bobines2

130

120

Températures [°C]

Coupe rotor/stator

Comparaison Modélisation / Essais

Phase	T (°C) Essais	T (°C) Simulations	ΔT (°C)
1	131	125,2	6,2
2	99	116,7	16,3
3	110,2	116,8	6,2
4	102	113,5	11,5
5	114	114,8	0,8

Cartographie des pertes pour le cas de dimensionnement

Couple : 36 N,m ; Vitesse de rotation 3200 tr/mn

Pertes totales au rotor = 26,7 W Pertes totales au stator = 110 W Pertes totales Cuivres = 575 W

8

nvertisseu

d'énergie

Intégré ntelligent

Modélisation sous SAME du cas de dimensionnement

;

onvertisseur d'énergie 9 Intégré Intelligent

Nombre de noeux : 3076

Temps de calcul : 3 minutes

Décomposition axiale de la machine

Cuivre Tole

Carter Air

Coupe tetes des bobines2

Cartographie des températures

Coupe rotor/stator

Vers de nouvelles techniques de refroidissement

Exemples d'échanges thermique dans une machines

Les 3 modes de transferts thermiques classiques Conduction, Convection, Rayonnement

Performances des modes de transferts thermiques

Densité thermique en W/m²

Les systèmes de transfert thermique

Les liquides testés

Caractéristiquess

Peformances

	Air	Huile	Liquide 3M Novec
Formulation			$C_4F_9OC_2H_5$
Conductivité thermique (W/m·K)	0,0234	0,136	0,075
Masse volumique (Kg/ m^3)	1,21	884	1400
Viscosité cinématique (<i>m</i> ² /s)	1,57×10 ⁻⁵	5,5×10 ⁻⁴	3,2 ×10 ⁻⁷
Capacité thermique (J/Kg,K)	1006	2000	1300
Chaleur latente (KJ/Kg)		1,97	142
Température d'ébullition (°C)	- 194,3	300	34
Température de solidification(°C)			-122,5
Tension de surface (dynes/cm)			12,4
Pression de vapeur saturante (KPa)			64 6

10,000

Jets impactant les têtes de bobines

Exemple d'installation

Jets impactants

nvertisseur d'énergie

Intégré ntelligent

Têtes de bobines coupe 2

Comparaison des températures

Phase	Cas de dimensionnement (T en °C)	∆T Jet d'air	ΔT Jet 3M Novec 7200	∆T Jet d'huile
1	158,2	14,1	28,1	35,7
2	149,2	14,5	28,65	37,75
3	152,01	13,41	26,21	33,71
4	151,8	13,6	26,7	33,7
5	148,5	14,3	28,4	37,6

Convection forcée dans les canaux rotoriques

UNION EUROPEENNE

Résultats des simulations SAME

Cas de dimensionnement

180

160

Températures [°C]

80

60

Avec convection force dans les canaux du rotor

160

Températures [°C]

80

60

Coefficient de convection $h = 50 \text{ W/m}^2$, K

Coupe Rotor/Stator

unc le FEDER

Rotor	Cas de dimensionnement (T en °C)	Cas avec canaux rotoriques (T en °C)	ΔT (en °C)
	85,14	81,4	3,7
	Service Singage Hauts-de-France	Liberié · Égalité · Fraternité République Française	e-France

19

onvertisseur d'énergie

Intégré ntelligent

- Ω : vitesse de rotation
- H : distance entre l'axe de rotor et l'axe de caloduc
- R : rayon de caloduc
- H_f: longueur des ailettes
- U : espacement entre les ailette
- T_{sf} : Température de la source froide

20 cervertisseur d'énergie Intégré Intégré

Géométrie initiale H : 25 mm u : 2 mm T_{sf} : 100 °C r : 3 mm H_f : 9 mm

Température versus vitesse de rotation

la temperature augmente en augmentant la vitesse de rotation La température est uniforme dans les régions du condenseur et de l'évaporateur,

Comparaison entre un caloduc tournant et une barre en acier

La température de l'évaporateur du caloduc tournant est toujours inférieure à celle d'une barre en acier inoxydable; La différence entre les températures de l'évaporateur et de la paroi du condenseur est faible,

Optimisation de la position des caloducs tournants

22

Paramètres: distance H, longueur d'ailette H_f, rayon du caloduc r, espacenemt entre les ailittes u

Maximiser le flux de refroidissement

 $\phi_C = h_{eq}S_{ech} = \overline{h_C}(2nS_f + S_C) = \frac{\lambda \overline{Nu}}{L_C}(2nS_f + S_C)$

Contraintes: H+ H_f +r< rayon de stator

Méthode : Adaptive Particle Swarm Optimization method (APSO)

Comparaison entre la géométrie initiale et la géométrie optimale

a géométrie optimale améliore les performances thermiques du caloduc tournant.

Les paramètres géométriques optimales

	u (mm)	H _f (mm)	r (mm)	H (mm)	фс(W/К)	
Valeur initiale	2	9	3	25	0,3	L
Valeur optimale	1	12,75	3	28,25	0,797	

Effet de la source froide sur les performances des

23

d'énergie Intégré

Effet de la température de la source froide pour ω = 13000 tr/mn

L'augmentation de la température de la source froide entraîne une augmentation de la température du caloduc tournant,

Cartographies de temperatures avec et sans caloducs

24

Difficile de voir nettement l'influence de l'implantation des caloducs,

Ajout de pales rotoriques

Ajout de pales rotoriques

Structure de l'écoulement

	Debit (L/s)
Q in1	17,15
Q in2	-10,2
Q ent	1,11

Ajout de pales rotoriques

Phase	Cas de dimensionnement (T en °C)	Rotor avec pales rotoriques (T en °C)	ΔΙ
1	158,2	148,7	9,5
2	149,2	136,5	12,7
3	152,01	139,4	12,61
4	151,8	140,5	11,3
5	148,5	136,3	12,2

onvertisseur d'énergie

27

Exploitation des ouvertures statoriques

Il existe des ouvertures entre les bobines le long du stator

Exploitation de ces espacements pour refroidir la machine

Convection d'air dans les ouvertures statoriques

5

148,5

29

nvertisseur d'énergie

Intégré ntelligent

14,3

Cas de dimensionnement (coupe R/S)

Phase 2

Convection dans les ouvertures stator (coupe R/S)

134,2

Ajout de barres poreuses saturées en liquide dans les ouvertures statoriques

Principe de fonctionnement

chaleur dissipée par le stator

Le changement de phase liquide/vapeur dans un milieux poreux permet de transporter la

Implantation

30

nvertisseur d'énergie

Intégré ntelligent

Ajout de barres poreuses saturées en liquide dans les ouvertures statoriques

Cas de dimensionnement (coupe R/S)

Barres poreuses saturées dans les ouvertures stator (coupe R/S)

31

Phase	Cas de dimensionnement (T en °C)	Mode ouvertures statoriques (T en °C)	ΔΤ
1	158,2	139,1	19,1
2	149,2	130,1	19,1
3	152,01	134,5	17,51
4	151,8	134,7	17,1
5	148,5	129,5	19

Refroidissement des transistors

Caractéristiques des transistors

Deux transistors GaN à refroidir Puissance totale : **70 W** Surface à refroidir : **3,1X 5,9 mm** Densité de flux maximale : $250 \frac{W}{cm^2}$

Caractéristiques de la TIM

Il doit être un isolant électrique

Dissipateur Thermique

Matériau : aluminum Dimensions : 60X60X25 mm

Refroidissement des transistors

Configurations testées

Component	Hi-Flow 300P	Sil-Pad® 1500ST	GAP3000S3 OR	Mica
Fabricant	Bergquist	Bergquist	Bergquist	AAVID
Thermal Conductivity (W/m-K)	1,6	1,8	3	0,53
Thickness (mm) available	0,102	0,203	0,254	0,05-0,1

Matériaux d'interface thermique (L2EP)

Refroidissement des transistors: dissipateur

350

300

250

200

150

d'énergie Intégré ntelligent

Convection naturelle

 $h_{conv} = 10 \text{ W/m}^2\text{K}$; $T_{ext} = 293 \text{ K}$

La température dépasse toujours 125 C° pour tous les matériaux de TIM étudiés

Convection forcée

Température maximale (°C)	Hi-Flow 300P	Sil-Pad [®] 1500ST	GAP3000S30R
Convection naturelle	393	474	396
Convection forcée	240	375	296

Refroidissement des transistors : dissipateur

Séparation des 2 composants Un dissipateur par composant

MATERIAL : A 6063 FINISH : BLACK ANODIZE DIMENSIONS : mm Dimensions dissipateur : 40X40X25 mm Matériau : Aluminium Dimensions ailettes : 40X0,55X12 mm Nombre d'ailettes : 19 Puissance : 35 W Ventilateur: 60X60X10 mm

Refroidissement des transistors : dissipateur

Dimensions dissipateur : 75X65X45 mm Matériau : Aluminium Ventilateur: 60X60X10 mm TIM: TGF-Z1000-SI Epaisseur TIM= 1 mm Conductivité TIM= 11W/m/K

36

onvertisseur d'énergie

Intégré ntelligent

Refroidissement des transistors : dissipateur

37

d'énergie

Intégré ntelligent

Température entre l'interface thermique et le bloc de chauffe pour deux puissances appliquées différentes

Température entre l'interface thermique et le bloc de chauffe pour deux vitesses de ventilation

onvertisseur d'énergie

Intégré ntelligent

Fluides : air, huile, liquide diélectrique

Paramètres : Q : débit d : diamètre de la buse H : distance entre le jet et la plaque

Refroidissement des transistors : jet impactant

Dimensions de la plaque : 40X40X4 mm ; Epaisseur de la TIM: 0,1 mm ; Conductivité thermique de la TIM : 6 W/m/K

39

Intégré

T_{max} avec jet d'air 150 °C ; T_{max} avec jet liquide diélctrique 88 °C ; T_{max} avec jet d'huile 79 °C

41

convertisseur d'énergie

> Intégré Intelligent

Exemple d'une cartouche chauffante de puissance 3,21 W plongée dans un sel de température de fusion T_f =90°C

Contrôle thermique par Matériaux à Changement de Phase

nvertisseur d'énergie

42

Contrôle thermique par Matériaux à Changement de Phase

MCP + matrice silicone

MCP + matrice graphite

Région Hauts-de-France

0

Combinaison de plusieurs technologies de refroidissement

44

convertisseur d'énergie Intégré Intelligent

Schéma de principe de la configuration

Combinaison de plusieurs technologies de refroidissement

Vitesse de rotation 9000 rpm

Pertes totales au rotor = 130,6 W Pertes totales au stator = 188 W Pertes totales Cuivres = 895 W

Combinaison de plusieurs technologies de refroidissement

47

Coût économique des solutions de refroidissement

48

convertisseur d'énergie Intégré Intelligent

Plus le système de refroidissement permet de dissiper une large gamme de flux thermique, plus, ce système est impactant pour le coût financier,

Ce graphique met en avant l'importance de connaître la puissance thermique à évacuer d'un élément pour y associer le système de refroidissement adapté,

