

Tâche 5 : analyse comparative de plusieurs techniques de refroidissement des GaN

Souad Harmand

- Partie 1 : Analyse comparative de plusieurs techniques de refroidissement des GaN
- Partie 2 : Modélisation du mode dégradé et prise en compte de l'effet de la variation de la température sur les pertes

Partie 1

Analyse comparative de plusieurs techniques de refroidissement des GaN

Refroidissement des convertisseurs

convertisseu d'énergie Intégré Intelligent

- **Une démarche progressive**
 - Essais sur bloc chauffant
 - Essais sur les composants GaN réels
- □ Les techniques de refroidissement testées
 - Dissipateur à ailettes
 - Plaque à eau
 - Immersion
 - Matériaux à Changement de Phase
 - Jet d'air
- **Caractéristique des composants**
 - Dimenssion : 3,1mm X 5,9 mm
 - Puissance totale : 70 W
 - Densité de flux thermique maximale : 250 W/m²

Cartouche chauffante

convertisseur d'énergie

> Intégré ntelligent

<u>Packaging</u>

Emplacement niveau machine

Synthèse des essais sur le bloc chauffant

 \rightarrow L'interface TFO-X-160 est la plus performante

Comparaison des différents technologies de refroidissement

 Pour un fonctionnement de longue durée, Dissipateur, plaque à eau, immersion et jet d'air sont les plus performants;

8

d'énergie Intégré

 MCP peut être intéressant pour un fonctionnement à courte durée,

		Encombrement	Température maximale (°C)	Cout et entretien	Consommation énergétique
Dissipateur à ailettes	actif	-	101	+	++
Plaque à eau	actif	++	92	++	++
Immersion	passif	-	100	-	
МСР	passif		120 à t=2500 s		
Jet d'air	actif	+	93	+	++
	* * * * * * * * * UNION EUROPEENNE	Libert Hauts-de-France arc is FPDE	é · Égalité · Fraternité DELIQUE FRANÇAISE	Région Hauts-de-Franc	ce

convertisseur d'énergie

> Intégré Intelligent

Refroidissement par dissipateur

11

Composant

Essai dissipateur

détruit 90 60 ට⁸⁰, Composant 1 50 ~70 Composant 2 40 € Puissance appliquée Duissance (20 10 10 0 0 1000 2000 3000 4000 5000 6000 0 Temps(s)

La température est mesurée par thermocouple à l'interface composant – système de refroidissement

- Puissance= U*I avec U et I donnés par le système d'alimentation
- Présence d'un décalage entre les températures des composants 1 et 2 car les deux composants :
 - ne sont pas alignés
 - montés en parallèle, ne consomment pas le même courant

Refroidissement des GaN par dissipateur

12

onvertisseu

d'énergie Intégré ntelligent

Définition d'un profil de puissance type pour tous les essais

Plusieurs paliers de 2 mn et durée totale de 8 mn

Variation de la puissance en fonction du courant appliqué

Température à la surface de deux composants

Refroidissement par dissipateur

Variation de tension drain-source en fonction de courant Corrélation : Température de jonction-Résistance Rds

Méthode de calcul de R_{DS} $R_{DS} = V_{DS} / I_{GaN}$ $V_{\rm DS}$ et $I_{\rm GaN}$ sont respectivement la tension drain -source et le courant aux bornes de GaN

Température de jonction en fonction de courant

20

Courant (A)

30

40

50

10

Cas sans refroidissement, validation de l'estimation de la température de jonction

14

onvertisseur d'énergie

Intégré ntelligent

I=25 A

Peinture noire \rightarrow Emissivité ≈ 1

avec le Fe DER

UNION EUROPEENNE

Cas : sans refroidissement

UNION EUROPEENNE

avec le FeDER

15

onvertisseur d'énergie

Intégré ntelligent

Photos des dispositifs de refroidissement des composants GaN

Liberté • Égalité • Fraternité

RÉPUBLIQUE FRANÇAISE

Intégré

Température de jonction pour les différents technologies de refroidissement

- Les résultats sont cohérents avec ceux réalisés avec le bloc chauffant
- Pour le dissipateur, la température de jonction atteint rapidement les limites (à 50 A le composant est détruit),
- La plaque à eau ainsi que l'immersion présentent de meilleures performances,
- Le MCP, système totalement passif, est une solution prometteuse

Dissipateur à ailettes et ventilateur : détruit à 50 A Plaque à eau : Température de jonction 70°C à 50 A Immersion dans le liquide diélectrique : Température de jonction 82°C à 50 A MCP paraffine : Température de jonction 93,3°C à 50 A (après 480 s)

Prise en compte de l'évolution des pertes en fonction de la température
 Simulations de modes dégradés et comparaison avec les essais expérimentaux

onvertisseur d'énergie

> Intégré ntelligent

Prise en compte de l'évolution des pertes en fonction de la température

convertisseu d'énergie Intégré Intelligen

Prise en compte de l'évolution des pertes en fonction de la température

21

Exemple Mode M1 (mode sain)

Pertes totales Rotor = 3,8 W Pertes totales Stator = 29,2 W Pertes totales Cuivre (bobines) = 337 W

Phase	Mesures	Simulations (avec correction en pertes)	Simulations (sans correction en pertes)
1	131	125,2	97,2
2	99	116,7	84,9
3	110,2	116,8	85,4
4	102	113,5	79,2
5	114	114,8	80,3

Comparaison avec et sans correction

- Pour des machines

 redondantes » (augmentation du nombre de phases de la machine n>3), en cas de défaut sur une phase, la machine peut toujours fonctionner sous un mode
 « degradé »
- Distribution non régulière des pertes dans la machine,
- Nécessité de suivre et prédire le comportement thermique de la machine sous ce mode,

Cartographie des pertes mode dégradé M2

Mode dégradé M2, 750 rpm, Couple= 27,72 N.m

- Distribution non homogène des pertes dans la machine,

- Défaut phase I → pertes dans la phase I=0
- Pertes totales cuivre (bobines) = 339 W

SAME : Simulations mode degradé M2

24

d'énergie Intégré

Section têtes des bobines 1

- Distribution de température non homogène suivant le niveau des pertes et l'échange avec l'extérieur
- **Température** maximale en positions 5a 5b et aux pertes joules correspondant maximales et emplacement le moins refroidi (partie haute de la machine)
- Température minimale positions lc ld en et correspondant aux pertes joules nulles et emplacement refroidi de la machine (ailettes extérieures)

Pertes Joules (W)

25

Température en °C

Simulations

105,5

110,2

105,4

108,1

117,4

Experimental

119,73

109,35

106,35

108,65

128,01

Į.

ΔΤ

14,23

0,85

0,95

0,55

10,6

onvertisseur d'énergie

> Intégré ntelligent

Comparaison Modélisation / Essais

Section Rotor/Stator

Phase

1

2

3

4

5

Refroidissement du convertisseur

- Plusieurs technologies de refroidissement actifs et passifs ont été testées pour deux configurations : bloc de chauffe et composants GaN;
- Les résultats obtenus pour le bloc chauffant sont en cohérents avec ceux des GaN;
- Pour le dissipateur, la température de jonction atteint rapidement les limites d'intégrité (à 50 A le composant est détruit);
- □ La plaque à eau et l'immersion présentent les meilleures performances,
- □ Le MCP combiné avec des ailettes (un système totalement passif) est une solution prometteuse en régime transitoire.

Code SAME

- L'évolution des pertes en fonction de la température a été intégré dans le code SAME;
- Plusieurs modes dégradés ont été simulés. Les résultats numériques sont en accord avec les résultats expérimentaux;

26